178 research outputs found

    Pricing Ad Slots with Consecutive Multi-unit Demand

    Full text link
    We consider the optimal pricing problem for a model of the rich media advertisement market, as well as other related applications. In this market, there are multiple buyers (advertisers), and items (slots) that are arranged in a line such as a banner on a website. Each buyer desires a particular number of {\em consecutive} slots and has a per-unit-quality value viv_i (dependent on the ad only) while each slot jj has a quality qjq_j (dependent on the position only such as click-through rate in position auctions). Hence, the valuation of the buyer ii for item jj is viqjv_iq_j. We want to decide the allocations and the prices in order to maximize the total revenue of the market maker. A key difference from the traditional position auction is the advertiser's requirement of a fixed number of consecutive slots. Consecutive slots may be needed for a large size rich media ad. We study three major pricing mechanisms, the Bayesian pricing model, the maximum revenue market equilibrium model and an envy-free solution model. Under the Bayesian model, we design a polynomial time computable truthful mechanism which is optimum in revenue. For the market equilibrium paradigm, we find a polynomial time algorithm to obtain the maximum revenue market equilibrium solution. In envy-free settings, an optimal solution is presented when the buyers have the same demand for the number of consecutive slots. We conduct a simulation that compares the revenues from the above schemes and gives convincing results.Comment: 27page

    An improved approach for the segmentation of starch granules in microscopic images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Starches are the main storage polysaccharides in plants and are distributed widely throughout plants including seeds, roots, tubers, leaves, stems and so on. Currently, microscopic observation is one of the most important ways to investigate and analyze the structure of starches. The position, shape, and size of the starch granules are the main measurements for quantitative analysis. In order to obtain these measurements, segmentation of starch granules from the background is very important. However, automatic segmentation of starch granules is still a challenging task because of the limitation of imaging condition and the complex scenarios of overlapping granules.</p> <p>Results</p> <p>We propose a novel method to segment starch granules in microscopic images. In the proposed method, we first separate starch granules from background using automatic thresholding and then roughly segment the image using watershed algorithm. In order to reduce the oversegmentation in watershed algorithm, we use the roundness of each segment, and analyze the gradient vector field to find the critical points so as to identify oversegments. After oversegments are found, we extract the features, such as the position and intensity of the oversegments, and use fuzzy c-means clustering to merge the oversegments to the objects with similar features. Experimental results demonstrate that the proposed method can alleviate oversegmentation of watershed segmentation algorithm successfully.</p> <p>Conclusions</p> <p>We present a new scheme for starch granules segmentation. The proposed scheme aims to alleviate the oversegmentation in watershed algorithm. We use the shape information and critical points of gradient vector flow (GVF) of starch granules to identify oversegments, and use fuzzy c-mean clustering based on prior knowledge to merge these oversegments to the objects. Experimental results on twenty microscopic starch images demonstrate the effectiveness of the proposed scheme.</p

    Robust Automatic Focus Algorithm for Low Contrast Images Using a New Contrast Measure

    Get PDF
    Low contrast images, suffering from a lack of sharpness, are easily influenced by noise. As a result, many local false peaks may be generated in contrast measurements, making it difficult for the camera’s passive auto-focus system to perform its function of locating the focused peak. In this paper, a new passive auto-focus algorithm is proposed to address this problem. First, a noise reduction preprocessing is introduced to make our algorithm robust to both additive noise and multiplicative noise. Then, a new contrast measure is presented to bring in local false peaks, ensuring the presence of a well defined focused peak. In order to gauge the performance of our algorithm, a modified peak search algorithm is used in the experiments. The experimental results from an actual digital camera validate the effectiveness of our proposed algorithm

    An attention residual u-net with differential preprocessing and geometric postprocessing: Learning how to segment vasculature including intracranial aneurysms

    Get PDF
    Objective Intracranial aneurysms (IA) are lethal, with high morbidity and mortality rates. Reliable, rapid, and accurate segmentation of IAs and their adjacent vasculature from medical imaging data is important to improve the clinical management of patients with IAs. However, due to the blurred boundaries and complex structure of IAs and overlapping with brain tissue or other cerebral arteries, image segmentation of IAs remains challenging. This study aimed to develop an attention residual U-Net (ARU-Net) architecture with differential preprocessing and geometric postprocessing for automatic segmentation of IAs and their adjacent arteries in conjunction with 3D rotational angiography (3DRA) images. Methods The proposed ARU-Net followed the classic U-Net framework with the following key enhancements. First, we preprocessed the 3DRA images based on boundary enhancement to capture more contour information and enhance the presence of small vessels. Second, we introduced the long skip connections of the attention gate at each layer of the fully convolutional decoder-encoder structure to emphasize the field of view (FOV) for IAs. Third, residual-based short skip connections were also embedded in each layer to implement in-depth supervision to help the network converge. Fourth, we devised a multiscale supervision strategy for independent prediction at different levels of the decoding path, integrating multiscale semantic information to facilitate the segmentation of small vessels. Fifth, the 3D conditional random field (3DCRF) and 3D connected component optimization (3DCCO) were exploited as postprocessing to optimize the segmentation results. Results Comprehensive experimental assessments validated the effectiveness of our ARU-Net. The proposed ARU-Net model achieved comparable or superior performance to the state-of-the-art methods through quantitative and qualitative evaluations. Notably, we found that ARU-Net improved the identification of arteries connecting to an IA, including small arteries that were hard to recognize by other methods. Consequently, IA geometries segmented by the proposed ARU-Net model yielded superior performance during subsequent computational hemodynamic studies (also known as patient-specific computational fluid dynamics [CFD] simulations). Furthermore, in an ablation study, the five key enhancements mentioned above were confirmed. Conclusions The proposed ARU-Net model can automatically segment the IAs in 3DRA images with relatively high accuracy and potentially has significant value for clinical computational hemodynamic analysis

    Speckle reducing bilateral filter for cattle follicle segmentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasound imaging technology has wide applications in cattle reproduction and has been used to monitor individual follicles and determine the patterns of follicular development. However, the speckles in ultrasound images affect the post-processing, such as follicle segmentation and finally affect the measurement of the follicles. In order to reduce the effect of speckles, a bilateral filter is developed in this paper.</p> <p>Results</p> <p>We develop a new bilateral filter for speckle reduction in ultrasound images for follicle segmentation and measurement. Different from the previous bilateral filters, the proposed bilateral filter uses normalized difference in the computation of the Gaussian intensity difference. We also present the results of follicle segmentation after speckle reduction. Experimental results on both synthetic images and real ultrasound images demonstrate the effectiveness of the proposed filter.</p> <p>Conclusions</p> <p>Compared with the previous bilateral filters, the proposed bilateral filter can reduce speckles in both high-intensity regions and low intensity regions in ultrasound images. The segmentation of the follicles in the speckle reduced images by the proposed method has higher performance than the segmentation in the original ultrasound image, and the images filtered by Gaussian filter, the conventional bilateral filter respectively.</p

    A robust detail preserving anisotropic diffusion for speckle reduction in ultrasound images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Speckles in ultrasound imaging affect image quality and can make the post-processing difficult. Speckle reduction technologies have been employed for removing speckles for some time. One of the effective speckle reduction technologies is anisotropic diffusion. Anisotropic diffusion technology can remove the speckles effectively while preserving the edges of the image and thus has drawn great attention from image processing scientists. However, the proposed methods in the past have different disadvantages, such as being sensitive to the number of iterations or low capability of preserving the details of the ultrasound images. Thus a detail preserved anisotropic diffusion speckle reduction with less sensitive to the number of iterations is needed. This paper aims to develop this kind of technologies.</p> <p>Results</p> <p>In this paper, we propose a robust detail preserving anisotropic diffusion filter (RDPAD) for speckle reduction. In order to get robust diffusion, the proposed method integrates Tukey error norm function into the detail preserving anisotropic diffusion filter (DPAD) developed recently. The proposed method could prohibit over-diffusion and thus is less sensitive to the number of iterations</p> <p>Conclusions</p> <p>The proposed anisotropic diffusion can preserve the important structure information of the original image while reducing speckles. It is also less sensitive to the number of iterations. Experimental results on real ultrasound images show the effectiveness of the proposed anisotropic diffusion filter.</p
    corecore